実務データ分析虎の巻Vol.16(最初の課題定義で気を付けること:その1)


bnr_toranomaki



データ分析のベースとなる部分(分析する前の考え方など)は、ロジカルシンキングの世界そのものだなと強く思います。



ロジカルに考えられた仮説や課題設定ができていないと、いかにその後の分析手法が優れていても、有効な答えにたどり着かないからです。



 



このプロセスは「適切な課題設定」から始まりますが、そのポイントの一つが



「明確、具体的な言葉の定義」です。



 



例えば「売上に対する販促が“効いていない”」という課題に対して、



「そうか!それは問題だ!」と突っ走るのではなく、



「効いていない」と判断した根拠を定量的に確認、共有しておくことは重要です。



 



“半年前はXXX円の販促で来店者が5%増えたが、現在では1~2%に留まる。”



 



を課題だと具体化できれば「それはまだ課題と呼べない」とか、「5%増はそもそも



標準的だったのか」といった確認や議論ができます。



ここを蔑ろにしたまま突っ走ると、何のために分析し、その結果をどう評価するかが曖昧なまま作業に突入します。



 



これを避けるのが、「適切な課題設定」なのです。



関連記事

  1. 実務データ分析虎の巻Vol.56(データ分析力を本当に組織の力にするために何が必要か)

  2. (1/15)『課題解決のためのデータ分析入門』セミナー

  3. 2/9 日経BP主催『仮説立案実践講座』やります!

  4. 埼玉県立熊谷図書館にて講演しました

  5. 『日経情報ストラテジー』連載「マネージャのためのデータリテラシー講座」第5回

  6. 100万社のマーケティング3月号「行動経済学」連載

PAGE TOP