実務データ分析虎の巻Vol.26(仮説の作り方)


bnr_toranomaki



データ分析に限らず、「仮説作り」に関して悩まれている方が思ったよりたくさんいる、と感じています。



ただ、「仮説を作れるようになる」とはどういうことか具体的なイメージは人により一律ではないようです。



データ分析での「仮説」には2通りあると考えています。



(1)現状把握と課題の場所を特定するための仮説



現状はどうなっているのか?課題はどこに発生しているのか?



これを特定するために必要な仮説です。これに答えるためのストーリーを完成するには、情報の穴を埋めるための仮説が必要です。



具体的にはデータをどう分解し、比較するかを決定するための仮説です。



 



(2)要因を深掘りするための仮説



現状把握や課題の場所が特定できたら、次には「なぜそれが起こっているのか?」を知る必要があります。



その「なぜ?」のアイデアを具体的にするための仮説が必要です。



その仮説に沿って、要因を特定していきます。



 



 



かなり端折って書きましたが、要は「仮説を作る」とはどういう目的で何を得るものなのかを、分析プロセスの中で考えないと、いつまでも漠然としたまま悶々とする気持ちが払拭できません。



 



このあたりは私の研修やセミナーでじっくりやるところです。



関連記事

  1. 【期間終了迫る!】東洋経済主催『5ステップで進めるデータ分析活用講座』オンデマンド講座公開

  2. 2024年も大変お世話になりました

  3. 地方自治体でのデータ活用の取り組み成果が新聞記事に(和歌山県紀の川市役所)

  4. 6/7 オンラインセミナー『大学(高校)におけるオンライン授業のポイント』

  5. 5/15 『Excelによる事業利益シミュレーション基礎講座』を開催

  6. 東洋経済最新号にオンデマンド講座案内が出ております

PAGE TOP