実務データ分析虎の巻Vol.26(仮説の作り方)


bnr_toranomaki



データ分析に限らず、「仮説作り」に関して悩まれている方が思ったよりたくさんいる、と感じています。



ただ、「仮説を作れるようになる」とはどういうことか具体的なイメージは人により一律ではないようです。



データ分析での「仮説」には2通りあると考えています。



(1)現状把握と課題の場所を特定するための仮説



現状はどうなっているのか?課題はどこに発生しているのか?



これを特定するために必要な仮説です。これに答えるためのストーリーを完成するには、情報の穴を埋めるための仮説が必要です。



具体的にはデータをどう分解し、比較するかを決定するための仮説です。



 



(2)要因を深掘りするための仮説



現状把握や課題の場所が特定できたら、次には「なぜそれが起こっているのか?」を知る必要があります。



その「なぜ?」のアイデアを具体的にするための仮説が必要です。



その仮説に沿って、要因を特定していきます。



 



 



かなり端折って書きましたが、要は「仮説を作る」とはどういう目的で何を得るものなのかを、分析プロセスの中で考えないと、いつまでも漠然としたまま悶々とする気持ちが払拭できません。



 



このあたりは私の研修やセミナーでじっくりやるところです。



関連記事

  1. 【再掲】翔泳社主催『柏木先生に学ぶ、実務家のための「データ活用」徹底実践講座』(1/22)

  2. My blog page in English HERE! (英語ブログ)

  3. 実務データ分析虎の巻Vol.47 (データ活用の成果を左右するもの(入口編))

  4. クルマ情報誌「Goo10月号」に寄稿しています!

  5. データ活用に必要な心構え5か条

  6. 翔泳社主催『5ステップで進める「データ分析・活用」実践講座【オンライン】』(8/29)

PAGE TOP